
Sample Arduino Curriculum (All ages)
The material is not split up into days, rather sections so that progress can be made at the student’s pace. 

1. Diagnostic Test
The student will be required to provide a solution to either a programming problem or a circuitry 
problem, or both, based on their expertise and interests. This test is intended to be difficult, and 
multiple factors will be considered regardless of whether they were able to solve the problem 
successfully.

Programming-based prompts may include:
1. Write a function to reverse the order of words in a given sentence.

2. Implement a simple database using an array and create a method to add, retrieve, and delete 
elements. 

3. Write a program to find the factorial of a given number using recursion. 
4. Design a class hierarchy for a simple object-oriented system that models a university with 

students, courses, and teachers. 
5. Implement a simple search engine that can search for keywords in a given text. 
6. Write a program to convert decimal numbers to binary and vice versa. 
7. Implement a sorting algorithm, such as bubble sort, selection sort, or insertion sort, and 

compare its performance to a built-in sorting method in your programming language. 
8. Create a system of classes to model a simple economy, including banks, accounts, and 

transactions. 
9. Implement a basic error handling system that catches exceptions and provides appropriate 

feedback to the user. 
10.Write a program that simulates a simple game, such as Tic-Tac-Toe or Hangman, and allows a 

user to play against the computer. 

Circuitry-based prompts may include:
1. Design a simple circuit using a breadboard that can control an LED with a push button. 

2. Implement a basic analog-to-digital conversion circuit using a microcontroller and a 
potentiometer. 

3. Create a circuit that can detect and respond to different types of inputs, such as temperature or 
light sensors. 

4. Design a circuit that can generate different audio frequencies using a microcontroller and a 
speaker. 

5. Implement a simple circuit that can communicate with other circuits or devices using wireless 
technology, such as Bluetooth or Wi-Fi. 

The following will be considered:
• Proficiency: Assess the student's ability to work with the chosen language or tools, as well as 

their understanding of the language's features, libraries, or the principles of circuit design.



• Problem Solving: Evaluate the student's ability to break down the problem, identify the key 
components, and develop an effective solution, whether it's a program or a circuit design. 

• Creativity: Consider the student's ability to think outside the box and come up with innovative 
approaches to solving the problem, as well as their willingness to explore new ideas and 
techniques. 

• Design Quality: Assess the quality of the student's design, including factors such as readability, 
maintainability, and documentation for programming projects, or clarity, efficiency, and 
reliability for circuit designs. 

• Code Management: Consider the amount of time taken to complete the project, and evaluate the 
student's ability to manage their time effectively. 

• Integration of External Resources: Assess the student's ability to find, understand, and integrate 
external resources, such as libraries, online tutorials, or component datasheets, into their project. 

• Error Handling and Debugging: Evaluate the student's ability to handle errors and bugs in their 
code or design, as well as their problem-solving skills when it comes to debugging. 

• Testing and Documentation: Assess the student's ability to test their code or design thoroughly 
and document their project, including the purpose of the program or circuit, the main functions 
or components, and any potential limitations. 

• Communication and Collaboration: Evaluate the student's ability to communicate their thought 
process, the solutions they have implemented, and any challenges they faced during the project. 

2. Introduction to Programming and Circuitry:
* Overview of programming languages and tools

Depending on what the student knows already, some portions may be skipped. The student will begin 
with using the following software:

• MIT’s Scratch 

Only will be used if truly necessary. Utilizing this software for an extended period of time will hinder 
the programmer’s growth.

• Visual Studio Code 

This IDE contains various features that will be useful throughout the programmer’s life, such as 
autocomplete, advanced syntax highlighting, inline compiler warnings, easy git usage, and more. The 
student is not required to install this, but poses a good means of education in contrast with Arduino 
IDE, which is tailored for the Arduino and which is required.

• C++ 



This is the language that Arduino uses to burn code to its ROM. The student will be asked to setup C++ 
and will be encouraged to experiment with the language. Educational materials, such as pamphlets or 
books, will be provided.

* Introduction to Arduino and its capabilities

The student will learn about Arduino and will learn about its applications. The student will learn how to 
use Arduino IDE and how to burn example programs to the board. The student can experiment with the 
board in their free time.

* Basic electronics and circuitry concepts 

The student will learn about binary and how it is implemented using high and low voltage, how to 
connect the Arduino to a breadboard, and other concepts such as the ground wire. These materials will 
be provided if the student doesn’t have them, but it is recommended to purchase an Arduino starter kit 
so that the student can explore out of their own curiosity.

3. Programming Fundamentals:
This section is intended to be one of the faster sections. If the student needs more time, the instructor 
will lower the pace, but in order for the student to accomplish their Arduino project goal, this section 
will have to be completed at a faster pace. 

* Variables, data types, and operators
Simple programming concepts, such as variables, data types, strongly vs weakly typed, interpreters vs 
compilers, will all be taught to the student. If the student is not able to understand these fundamental 
data types, additional time and material will be utilized as per the instructor’s discretion, because these 
concepts are crucial.

* Control structures (if-else, loops, functions, etc.)
Similar to the necessity of the previous section, time will be allocated as needed. The student will 
generally not face any major difficulties.

* Pointers and structs
This section is arguably the most difficult of all. The student will first conceptually understand 
reference vs value data and pointers and how to utilize them safely. The student will also learn about 
important library calls like malloc(3) to further their conceptual understanding. The student will learn 
about Structured Programming and how to work with typedef and structs at the lowest level. These 
constructs, which classify as Functional Programming, will be the most useful programming 
knowledge granted to the student. The student will be able to apply the concepts taught here to 
understand any language conceptually and will gain a stronger understanding of programming in 
general. 



The application of this information is not limited to programming. Pointers and structs being low-level 
constructs are extremely memory and CPU efficient. The Arduino board, with limited resources, would 
be among the most heavily impacted by the programmer utilizing these constructs.

* Object-oriented programming (OOP) concepts 
Object-oriented concepts like inheritance, polymorphism, methods, public/private/protected access, 
will be much easier for the student to visualize conceptually once they grasp the low level 
implementation of it by understanding the VMT (Virtual Memory Table) and how it is constructed off 
of pointers. 

In this section, the student may draw parallels between Python and C++. For this reason, it is 
recommended to install an IDE like Visual Studio Code due to its established support for multiple 
languages.

4. Circuitry and Electronics:
This section focuses on the fundamental concepts of circuitry and electronics that are essential for 
working with Arduino projects. The topics covered in this section include digital and analog circuits, 
working with sensors and actuators, and interfacing with microcontrollers.

* Digital and Analog Circuits:
In this part, students will learn about the differences between digital and analog circuits, their 
components, and how they function. They will also study various digital and analog circuits, 
such as logic gates, flip-flops, amplifiers, and filters. Understanding these circuits is crucial for 
interfacing sensors, actuators, and microcontrollers.

* Working with Sensors and Actuators:
This section covers the interaction with various types of sensors and actuators commonly used 
in Arduino projects, such as temperature sensors, light sensors, servo motors, and stepper 
motors. Students will learn about the interface protocols, connection methods, and data 
communication between sensors and actuators with the Arduino board. They will also learn how 
to calibrate and configure sensors and actuators for specific applications.

* Interfacing with Microcontrollers:
In this section, students will explore the fundamentals of microcontrollers, including their 
memory, input/output capabilities, and programming interfaces. They will learn how to connect 
and communicate with the Arduino board using programming languages like C++ and Arduino's 
built-in libraries. Students will also gain hands-on experience in writing code to control sensors, 
actuators, and other peripherals connected to the Arduino board.

5. Arduino Programming:
This section of the curriculum focuses on the programming aspect of Arduino development. It covers 
the installation and setup of the Arduino Integrated Development Environment (IDE) and introduces 
fundamental programming concepts specific to the Arduino platform. Students will learn at a steady 
pace, ensuring they understand each concept before moving on to the next. 



• Installing and Setting Up the Arduino IDE:
In this part, students will learn how to download and install the Arduino IDE on their 
computers, as well as how to set up the environment, provided they have not already. This 
process will be guided step-by-step, with hands-on experience in setting up the IDE and 
configuring the necessary tools.

* Basic Arduino Programming Concepts
This section introduces students to the fundamental programming concepts used in Arduino 
development. Topics include the syntax of variables, functions, loops, conditional statements, 
and basic input/output (I/O) operations in the Arduino C++ language. Students will learn to 
write simple Arduino sketches (programs) and understand the purpose of each concept.

* Working with Input/Output (I/O) Pins and Libraries
Here, students will delve into the core functionality of the Arduino board by learning about 
input and output pins, digital and analog I/O, and the use of libraries. They will learn how to 
control and manipulate digital and analog pins, work with sensors and actuators, and utilize the 
built-in libraries provided by the Arduino IDE.

* Intermediate Arduino Programming Techniques
In this part, students will expand their knowledge of Arduino programming by exploring more 
advanced concepts. Topics include advanced I/O operations, interrupts, timer functions, and 
advanced library usage. Students will learn to enhance their sketches and develop more complex 
projects.

6. Advanced Arduino Projects:
This section builds upon the foundational knowledge gained in the previous sections and delves into 
more complex and sophisticated Arduino projects. Students will explore advanced topics such as 
designing and implementing more intricate circuits, working with wireless communication protocols, 
and integrating advanced sensors and actuators into their projects.

* Designing and Implementing More Complex Circuits
In this part, students will learn to design and build more complex circuits that may include 
multiple microcontrollers, sensors, and actuators. They will understand the importance of proper 
circuit layout, power management, and troubleshooting techniques. Students will further their 
understanding of breadboards, and if time and resources permit, they will work with PCBs 
(Printed Circuit Boards), and learn how to solder components onto the boards.

* Working with Wireless Communication (Bluetooth, Wi-Fi)
This section covers the integration of wireless communication technologies, such as Bluetooth 
and Wi-Fi, into Arduino projects. Students will learn how to set up and configure wireless 
modules, as well as how to transmit and receive data using these protocols. They will also 
explore applications and examples of wireless communication in various Arduino projects. 
Depending on the scope of the student’s personal project and the time remaining, this section 
may be briefly touched upon.



• Advanced Sensor and Actuator Integration:
In this section, students will expand their knowledge of sensors and actuators by exploring more 
advanced devices and integrating them into their projects. Topics may include the use of high-
precision sensors, motor control algorithms, and advanced robotics. Students will learn to 
choose the appropriate sensors and actuators for their projects, as well as how to configure and 
optimize their performance.

8. Integrating Programming and Circuitry:

This section focuses on the integration of programming and circuitry concepts to create more robust 
and sophisticated Arduino projects. Students will learn to seamlessly combine their knowledge of 
programming and circuitry to design and implement projects that utilize advanced features and 
technologies. They will gain a deeper understanding of how programming concepts, such as pointers, 
objects, and libraries, can enhance the functionality and efficiency of circuits. In turn, they will also 
learn how to apply circuitry skills, like working with sensors and actuators, to create more complex and 
versatile programming applications.

Some topics covered in this section include:

* Real-time programming and system performance optimization:
Students will explore how to optimize their code for real-time performance, ensuring their 
projects run smoothly and efficiently. They will learn about interrupt handling, timing 
mechanisms, and the use of non-blocking functions in asynchronous programming.

* Advanced sensor and actuator integration:
In this section, students will expand their knowledge of sensors and actuators by exploring more 
advanced devices and integrating them into their projects. They will learn how to choose the 
appropriate sensors and actuators for their projects, as well as how to configure and optimize 
their performance depending on their program.

* Wireless communication and networking:
Students will learn about wireless communication protocols, such as Bluetooth, Wi-Fi, and 
LoRa, and how to integrate them into their Arduino projects. They will explore the possibilities 
of creating connected devices and networks, and how to secure their projects against potential 
threats.

* Implementing security and safety features:
Students will gain knowledge on how to integrate security and safety features into their Arduino 
projects, including encryption, authentication, and error handling. They will learn how to 
protect their projects from unauthorized access and ensure the safe and reliable operation of 
their devices.

Now that the student has the experience to create their dream project, they will begin working on it!

1. Project Ideation:



If the student doesn’t have any idea of what they want their project to be, or their project cannot be 
accomplished due to resources or limited experience, they will progress through this section. 

* Students brainstorm ideas for their dream Arduino-based project, considering the skills and 
knowledge they have acquired throughout the course.

The instructor cannot decide whether their project is realistic or not. The student will undergo 
adequate research that is necessary for their project. The instructor is allowed to make suggestions but 
should not hinder the creativity of the student. This is the part where the student’s experience shines.

* Students refine their ideas, breaking them down into manageable components and identifying 
the required hardware and software components. 

If the task cannot be accomplished, the student will most likely find out during this portion of their 
project. If it cannot be accomplished, they will brainstorm more ideas or perhaps limit the extent of 
their project during this course. The student can incorporate those features outside the course, but 
that is beyond the scope of this course.

2. Project Planning:
* Students create a detailed project plan, including a timeline, resource requirements, and 
milestones.

Organization is key in a complex project. The instructor will guide the student in this portion of the 
project. This portion will be kept to a minimum so that the student can begin with real world work. In 
some scenarios, the student will be recommended to write pseudocode.

* Students identify any potential challenges and develop strategies to address them. 
The student may be asked to utilize visual thinking skills on art and apply them to this project in order 
to aid their thinking and improve their observation. 

3. Design and Prototyping:
* Students design the circuitry and software components of their project, incorporating the skills 
and techniques they have learned.

As a complement to the pointer section, this will be the longest --and most difficult-- section for the 
student. The instructor will guide the student, but the instructor will be asked to refrain from giving 
excessive advice, as that could lower the quality of the student’s work. The student will be encouraged 
to use resources like StackOverflow, ChatGPT, and GeeksForGeeks as these are all real-world 
programming skills. The student will be recommended to create a git repo on a platform like GitHub or 
Codeberg.

* Students create a prototype and/or physical version of their project, testing and refining the 
design as needed. 

This section will require purchase of hardware, unless the student and/or their parents limit the scope of 
the project to a simulation, which is not recommended as it will severely impact their satisfaction. The 
student has completed their entire project from the ground up with minimal guidance, the student will 
be heartily congratulated and will begin working on some of the more difficult features if time permits.



4. Documentation and Presentation:
* Students document their project, including the design, code, and any challenges they faced 
and solutions they developed.

Code without documentation cannot be utilized properly by anyone other than the creator- the student 
will write formal documentation for any users or collaborators of the project. The student will 
document portions of the project which were difficult for the student on a public platform as a part of 
their learning experience and to aid future students.

* Students present their project to their peers and instructors, highlighting the key features and 
demonstrating the functionality of their creation. 

The student has prepared documentation, but live presentation with proper presenting skills is essential 
to a programmer, especially if the student is interested in pursuing programming/circuitry in college. 
The other students will be asked to listen and will not be required to take notes, as the presenting 
student should be able to captivate their audience.

5. Reflection and Improvement:
* Students reflect on their project, identifying areas for improvement and potential future 
enhancements.

The student may want create a to-do list if they intend on pursuing this project out of the scope of this 
course, as that would aid their organization. The student will document their reflections so that they can 
improve their future projects whether in future courses or not.

* Students consider how their experience with this project can be applied to future projects and 
their overall understanding of programming and circuitry. 

The student has learned a lot along the way, and the time the student spent will grant invaluable 
experience. The student will apply concepts such as metacognition to improve their thinking and 
problem solving on a broader scale, and will be encouraged to make this a habit as it contributes to 
their learning experience.

The student can now take part in other courses or complete projects on their own, depending on their 
curiosity and their educational requirements. The instructors will be asked to complete a self reflection 
and the students will reflect on their instructors.

Note: This curriculum is only a sample curriculum. This may be modified or adjusted to suit the 
students needs, as our organization specializes in working in a student per student basis. 


