added project structure. believe there is a better way to do this.
This commit is contained in:
parent
9e304f2d78
commit
b62f40d913
8
run.py
Executable file
8
run.py
Executable file
@ -0,0 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import pickle
|
||||
|
||||
|
||||
weights = pickle.load(open("weights.pkl", "rb"))
|
||||
|
||||
|
33
train.py
Executable file
33
train.py
Executable file
@ -0,0 +1,33 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
import matplotlib.pyplot as plt
|
||||
import pickle
|
||||
|
||||
digits = load_digits()
|
||||
|
||||
# input
|
||||
x = digits.images.reshape((len(digits.images), -1))
|
||||
|
||||
# what the output should be
|
||||
y = digits.target
|
||||
|
||||
mlp = MLPClassifier(hidden_layer_sizes=(18,),
|
||||
activation='logistic',
|
||||
alpha=1e-4, solver='sgd',
|
||||
tol=1e-4, random_state=1,
|
||||
learning_rate_init=.1,
|
||||
verbose=True)
|
||||
|
||||
mlp.fit(x, y)
|
||||
|
||||
fig, axes = plt.subplots(1, 1)
|
||||
axes.plot(mlp.loss_curve_, 'o-')
|
||||
axes.set_xlabel("iterations")
|
||||
axes.set_ylabel("loss")
|
||||
plt.show()
|
||||
|
||||
pickle.dump(mlp.coefs_, open( 'weights.pkl', 'wb'))
|
BIN
weights.pkl
Normal file
BIN
weights.pkl
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user